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We show that the dynamics of simple disordered models, like the directed trap model and the random energy
model, takes place at a coexistence point between active and inactive dynamical phases. We relate the presence
of a dynamic phase transition in these models to the extreme value statistics of the associated random energy

landscape.
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I. INTRODUCTION

The dynamics of glassy systems is by definition out-of-
equilibrium over experimental time scales. Glassiness mani-
fests itself through a great variety of dynamical features such
as aging, nonexponential relaxation of correlation functions,
or super-Arrhenius slowing down of the dynamics [1]. How-
ever the definition of glassiness remains an open problem
because, in many situations, no static parameters were found
to indicate whether or not a system is in a glassy state. There
is indeed a general agreement about the fact that the glassi-
ness of a system does not necessarily arise from an underly-
ing static transition [2].

To shed light on this question several dynamical ap-
proaches have been developed [1]. Here we explore the sug-
gestion made in [3] that glassiness arises in a system when a
coexistence between active and inactive regions of space
time takes place. The idea is that these dynamical heteroge-
neities are a defining feature of glassy systems. A method to
inquire into the space-time character of a system is the ap-
plication of the thermodynamic formalism of histories devel-
oped by Ruelle and co-workers [4]. While the equilibrium
statistical formalism studies the fluctuations in the configu-
ration space of the system, Ruelle’s formalism focuses on the
time realizations that the system can follow in configuration
space. A central parameter in this formalism is the activity
K(¢) of a history, which is the number of changes of configu-
rations between the initial time, set to zero, and time ¢. This
parameter is a physical, time-extensive observable.

For systems without quenched disorder, it was suggested
that when for large times a system is found to have two well-
separated sets of histories—one where the activity is exten-
sive in the system size, and the other where the activity is
subextensive—there will be a coexistence of active and in-
active regions of space time in the system, separated by
sharp interfaces. Thus the system will exhibit slow dynamics.
This was indeed successfully shown in the case of kinetically
constrained models of glasses [5] and for the nonequilibrium
steady state of some Markov processes [6].

Here we investigate the space-time properties of a family
of disordered systems. Besides the fact that these exhibit
experimental features akin to those of structural glasses,
there is some intrinsic interest to focus on the effect of
quenched disorder. As will become clearer in the next sec-
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tions, the central part of our study bears on the statistics of
the activity K(z), which is defined for each realization of
disorder. From the probability distribution of K one can build
a mathematical object—its large deviation function—which
in many respects can be argued to play the role of a dynami-
cal free energy. As is known from the statics of disordered
systems, the presence of quenched disorder induces addi-
tional difficulties when it comes to averaging over the disor-
der degrees of freedom. We have had to deal with similar
ones for the dynamical free energy that we are after in this
work.

In this paper we focus on the directed trap model and the
random energy model. Although they are simpler to study
they reproduce experimental features of more complex dis-
ordered and glassy systems like the superactivated behavior
of the viscosity in glasses [7], aging [8,9] or nontrivial vio-
lations of the fluctuation-dissipation theorem [10]. In both
cases, we show analytically that the aforementioned large
deviation function displays a discontinuity between the sets
of active and inactive histories: This suggests that also in
these disordered systems there is a signature of the glassy
behavior using the thermodynamic formalism of histories.
Furthermore, we study the influence of the distribution of the
disorder on the presence of a dynamic transition and discuss
its occurrence in connection [11,12] with the distributions of
extrema of disordered energy landscapes.

II. DIRECTED TRAP MODEL

A trap model is defined by N independent traps labeled by
an integer i, each trap being characterized by an energy E;.
We consider a continuous time Markov dynamics among
traps: The dynamical evolution is specified by the probability
P;(r) that the system stays in trap i at time ¢, and by the
transition rates W;; for jumping from trap j to trap i. In the
directed trap model the transition rates take the form

1
Wiy=8ijer

_ BE;
i where Bj—e PE; (1)
J

i=1,...,N. Thus the system evolves through the following
master equation:
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dP(n) _ PA0)  Pii(t)
dt B, B,

(2)

The trapping times B; are random variables distributed ac-
cording to a Lévy distribution

p(Bj) = 6(B;= DuB;' ™, e (0,1), (3)

where 6(x) is the Heaviside step function. In the following
we will use the notation O(B;)=[p(B;)O(B,)dB; to denote an
average over B;. In particular, the distribution in Eq. (3) im-
plies that the mean trapping time is infinite, which causes
anomalous diffusion.

A. Large deviation function

Ruelle’s thermodynamic formalism enables us to investi-
gate the dynamics of a system by studying the histories that
the system can follow in the configuration space. In the di-
rected trap model configurations are represented by traps so
that a history in the configuration space between time 0 and
time ¢ is specified by a sequence of traps visited during this
time and by the time intervals elapsed between each jump
from one trap to the next. To perform a statistics over histo-
ries one must classify them according to a time-extensive
(and history-dependent) parameter. A suitable one is the ac-
tivity K(¢), defined as the number of configurations, here the
number of traps, visited between time zero and time 7. In the
directed trap model, if the dynamics starts at time =0 in the
trap i=0, K(z) is simply the trap in which the system stands
at time 7.

We now consider the probability P;(K,z) to be in trap i at
time ¢ at fixed activity, and define its Laplace transform

Pis,)) = >, e KP(K.1). (4)
K=0

It can be shown that P,(s,7) obeys an evolution equation
(similar to but different from a master equation) of the form

9,P(s,t)=WKP,(s,) where the elements of the evolution op-
erator take the form

—s

s L (5)

W=65,, ,—
Jst Bi—l J”B

i

From ﬁi(s,t) in Eq. (4), one defines the cumulant generating
function of the activity K,

Zi(s,t) = E ﬁi(s,t) = (e~*K), (6)

where (---) stands for an average over all possible histories
that the system can follow between time O and time f. At
large time ¢ one expects

Zy(s,1) ~ K0, (7

where x(s) is the largest eigenvalue of the linear operator
Wy in Eq. (5) and is thus a large deviation function. At large
time z, the derivatives of (s) will give the cumulants of the
activity K(r). Note that ¢(s) depends a priori on the real-

PHYSICAL REVIEW E 78, 011120 (2008)

ization of the random variables B; (3) and will thus be itself
a random variable.

The parameter s allows us to probe the different histories
the system can follow: Positive s will correspond to the in-
active phase of the dynamics, i.e., K smaller than its average,
while negative s corresponds to the active phase of the dy-
namics, i.e., K larger than its average. A discontinuity in the
derivatives of the large deviation function will correspond to
a dynamic transition between two different phases (the active
one and the inactive one), reflecting the sharp interfaces be-
tween dynamical heterogeneities.

B. Dynamic transition

To compute the large deviation function ig(s) we must

find the largest eigenvalue of WX defined in Eq. (5). The N
eigenvalues \(s), | =j=N are solutions of the equation

ﬁi— ( ’t) ﬁl( ,t) ~
BI,._SI - —Bsi =N ($)P(s.1), (8)

e—S

and i (s) =max, =;=y{\;(s)}. The computation of the charac-
teristic polynomial is straightforward and leads to the eigen-
value equation

N
12 In[1+X;(s)B;]=~s. (9)
Ni:l

Obviously, one has (s=0)=0. Let us first consider the case
s <0 where there is only one X\;> 0 solution of Eq. (9) which
thus coincides with (s). In that case, i.e., in the active
phase, it is natural to assume that i (s) is self-averaging so
that, in the limit N— o0, one expects g(s) = k(s). Using the
law of large numbers to treat the sum in Eq. (9), one obtains
in the N— o0 limit

“r dBB™ " In[1 + (s)B] =5, (10)
1

which uniquely determines #(s). To describe the fluctua-
tions of y(s) around its mean for finite N>1 one writes
U(8) = hi(s) = xx(s) N2+ O(N~') where xk(s) is a zero-
mean random variable. Using the central limit theorem ap-
plied to the sum in Eq. (9), one obtains that yx(s) is a Gauss-
ian variable such that the distribution of ¢ (s) is given for
N>1 by

N T a2
_ N NL(s) = (s)]
plk(s)] = o_a\’,%exl)(_ Py )s (11)

(3

where a'i is given by

-2
) (In2[ 1 + g(s)B] = {In[ 1 + yi(5)BI}?),

(12)

B
"i:<1+m3

where ix(s) is given in Eq. (10).
Let us now consider s>0 and label the B;’s such that 0
<B;<-:-<By. In that case, one obtains the bounds
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FIG. 1. Plot of #(s) as a function of s for different values of N
and ©#=0.8. The solid line is the solution of Eq. (10): For s>0 the
curve approaches the horizontal axis as N~V# for N> 1.

1
- — < yls) <O0. (13)
By
From the distribution of the variables B; in Eq. (3) one ob-
tains that one of the largest one By is given by
p(By) = NuBy (1 - ByHN !, (14)

from which one obtains, for N>1,

1 1
-—= —N‘”“I‘(l + —)e‘”’”l. (15)
By M
Thus, from the bounds in Eq. (13) we find that

limy_... ¢x(s)=0 for s>0. On the other hand, for s<<0, one
has from Eq. (10) limy_,.. ¢x(s)>0 and in that limit ¢(s)
o (—s)"# for small s. Therefore, the first derivative (s) is
continuous but higher order derivatives (ﬁ,@(s) with p
=1/p will display a discontinuity in s=0, indicating a dy-
namic phase transition (of order higher than one).

We have checked the presence of this dynamic transition
by solving numerically the eigenvalue equation (9). In Fig. 1,
we show a plot of i(s) as a function of s for different values
of N=20, 30, 50, and 100 for ©=0.8. The data were obtained
by averaging over 10° samples. For s>0 these numerical
data show that ¢g(s) —0 when N—o [one finds indeed
Wi(s) < —=N"V# consistent with the bounds in Eq. (13)]. On
the other hand, this plot in Fig. 1 shows that limy_,.. ¥(s)
>0 for s<0. The solid line in Fig. 1 is the analytical value
of ix(s) obtained by solving numerically Eq. (10), which is
in good agreement with the numerical data and shows the
presence of a dynamical phase transition.

The slope of the large deviation ¥ (s) function is related
by Egs. (6) and (7) to the mean value of the activity (K) over
all histories, thus in the active phase (s <0) of the dynamics
the activity takes a constant value (K)>0 while in the inac-
tive phase (s >0) it is found to be subextensive in the system
size ((K)~N~"#). This coexistence of active and inactive
phases of space time, or dynamical heterogeneity is argued to
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FIG. 2. Numerical evaluation of the distribution of the large
deviation function for ©=0.8 and s=-0.4 (N=100,200). The solid
line is the rescaling of the Gaussian distribution (11). Inset: Numeri-
cal evaluation of the distribution of the large deviation function for
#=0.8 and s=0.2. The solid line is the large N limit of the rescaling
of distribution (16).

manifest itself through the glassy properties of the directed
trap model. In the corresponding pure system, where the
waiting times are no longer random variables, glassiness ob-
viously disappears, and so does the discontinuity in the de-
rivatives of the large deviation function. The activity is a
constant (K)>0 also in the s>0 phase and no dynamical
heterogeneity is present.

The numerical results in Fig. 1 were obtained assuming
that the large deviation function approaches its average in the
large N limit and is distributed according to Eqgs. (11) and
(12). Indeed this supposition was confirmed evaluating nu-
merically the probability distribution p[ k(s)] of ix(s) for a
negative s. In Fig. 2 we _show a plot of p[¢y(s)]N""? as a
function of N"[yx(s)—(s)] for u=0.8 and s=—0.4 (N
=100,200). The data were obtained by averaging over 3
X 107 samples. The solid line is the Gaussian distribution
obtained by rescaling by VN the equations (11) and (12). This
Gaussian is approached by the numerical data as the system
size grows.

On the other hand, for s> 0, the evaluation of the average
large deviation function, i.e., the solution of Eq. (10), was
done limiting the values of i(s) to the N-dependent bound
(13). Indeed we found numerically that the distribution
pli(s)] of i(s) for a positive s is well fitted by the form
(14),

PLYk()] = Npthes)“ 11 = ()1 (16)

for all N. In the inset of Fig. 2 we show the rescaled distri-
bution p[ir(s)]N"V# as a function of r(s)N'* for N
=100,200 averaged over 107 samples for s=0.2 and ©=0.8.
These distributions are found to be well approached by the
large N limit of the rescaled distribution which takes the
form p(x)=ux*'exp(—x*).
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III. RANDOM ENERGY MODEL

We consider now a widely explored model of disordered
systems, the random energy model (REM) introduced in [13]
as a mean-field spin-glass model. Its dynamics has been
studied in detail by Koper and Hilhorst in Ref. [14].

A. Dynamics of the REM

The random energy model is a system of 2" energy levels
E; which are independent random variables distributed ac-
cording to a Gaussian distribution of zero mean and variance
1 N J2
2 b

2R
eE/NJ

P(E)=—/—.
& VaNT?

(17)
The model exhibits a phase transition at the critical tempera-
ture T,=J/2vIn 2 below which the free energy becomes a
constant Ey(N)=NJyIn2 in the thermodynamic limit and
the entropy vanishes. As a consequence, the energy levels
close to Ey(N) will dominate the low-temperature phase. We
thus consider a system of N energy levels,

E;=E\\N) + €, (18)

where ¢; is small and nonextensive [ 14] distributed according

to
pep(e—ec)’
€)=
r(e 0, e<e,

€= €,

where p=T;1 is a constant and €, is a cutoff energy. In the
following, we will consider the scaling limit N— %, €.— %,
while Ne %=y is kept fixed, where the physical properties
of the REM for temperatures 7<<T,. take finite, cutoff inde-
pendent values.

The dynamics of this model is defined by a master equa-

tion

dP(t

J = 2 W,P(1) - 2 WP (1), (19)
e % i

where the transition rates W;; for going from level i to level

j are taken of the form [14]

W;;=B;V,V; with B;=e5, (20)

where i=1,...,N and V; are positive random variables. One
can easily check that the rates W;; obey the detailed balance
condition. The distribution of the B,’s can be easily derived
from the distribution of the energies ¢;, leading to

1/
EB_l_", for (E> <B,

0, otherwise,

1)

where we set u=p/B=T/T,, u e (0,1). We point out that the
mean probability B; to find the system in an energy level ¢;
is, like the mean trapping time in the directed trap model,
infinite.

Following Ref. [14], we will consider level-dependent
barriers V;=B;? with ¢ e (0,1). If one associates to each
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level i an independent random magnetization u; with zero
mean and variance N, the kinetic REM can be considered as
a magnetic model. Within this choice of level-dependent bar-
riers it has been shown that the behavior of the equilibrium
autocorrelation function for the magnetization exhibits a
nonexponential behavior [14]

C(t)y= 1?4 for g+u>1,

S 1
C(t) < 7™ for g+p<1 and q<5,

- 1
C() ~20Q2-1) g g+u<1 and g> E, (22)

where D is a constant, y=u/[1-2g+uq/(1-g)] and 7
=[2u/(1-q)-1]y.

Here we apply the thermodynamic formalism of histories
to this model and show that a dynamic transition takes place
reflecting the slow dynamics in this system (22).

B. Dynamic transition

To investigate the presence of a dynamic transition, we
look again at the large deviation function ¢g(s) defined
above in Eq. (7), associated to the number of configuration
changes K(r) between time O and time ¢. From the master
equation governing the dynamics (19), one obtains the equa-

tion of evolution of ﬁ,-(s,t) defined in Eq. (4),

dﬁi(s,t) AR
—L =N WEP (5,1
dt 2,: iPils:1)

=BV, >, V,P(s,1) = ViP(5,) 2 B;V;. (23)
JFi JFi

The large deviation function #(s) is the largest eigenvalue

of the evolution operator WX. The eigenvalues \ i(s) of WK
are solutions of the equation

fIN(9]=1, (24)

eB,V;
)\ - L1 ,
& 2 {Vi+ (e = DBV +\

(25)
where ¢x(s)=max;=;=y{\;(s)} and {=2,B;V;.

We first focus on the case g+ > 1. One notices that f(\)
has N simple poles on the negative real axis at x;=—[{V;
+(e™— l)B,»Vl-z] <0, and decreases to zero for A — . One has
also f(0)=1 for s=0, whereas f(0)>1 for s>0 and f(0)
<1 if §<0. Thus in the active phase, s <0, there is only one
positive eigenvalue \; which coincides with #(s) >0. As
done previously for the directed trap model, we thus suppose
that i(s) is self-averaging in the limit N— o and coincides
with its average. One obtains that, for s <O,

Pels) ~ NCru=Dlg (), (26)

where IZK(S) is independent of N and solution of the equation
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b B#2a
,uvf ———dB=¢’, (27)
v TBTY 4 ()
where o=uv""9"*/(q+pm—1)>0. Performing an analysis
similar to the one done for the directed trap model, one also
finds that the fluctuations of ¢(s) around its mean value
k(s) are described by a Gaussian as in Eq. (11) of variance
N—l/Z.

However, the analysis in the inactive phase is more subtle.
Indeed, given the singularities of f(\) in x;, together with the
fact that f(0)>1 for s >0, ix(s) satisfies the bounds

—min[{V;+ (e = 1)B;V;] < yy(s) < 0. (28)

If one labels the random variables B; such that B;<B,
<---<By one easily sees that the minimum on the left-hand
side of the inequality (28) is reached for the maximum By,
whose distribution is given in the large N limit by

p(By) = vuBy eV (29)

Using this distribution (29) together with the distribution of
the B;’s in Eq. (21) one obtains that

— o N <y (5) < 0, (30)

where c¢; >0 is a constant, independent of N. To find an
upper bound for ¢ (s), one writes the equation above (24) in
a different form:

s e”’B,V; =1
el (1=eML=BVi+ NV

Since the first term in the denominator is the sum of the
numerators, the remaining terms (1-e™)[{-B,V;+ )\(s)Vl-_l]
must be negative for at least one i. In this way we obtain an
upper bound for ifk(s),

Yi(s) < (¢7 = Dmin({V; - B,VY). (31)

Again, the minimum on the right-hand side of this inequality
is reached for the maximum B). Performing the average, one
obtains

Pi(s) < — cNaH-Die, (32)

where 0 <c¢, <c; is a constant. Combining these two bounds,
(30) and (32), one obtains, for s >0,

~ Uls) = O(N@H-1lk). (33)

Thus by looking at the behavior of ¢(s) for large N in Egs.
(26), (27), and (33), one shows that there is a dynamical

transition as s crosses 0. Equation (27) shows that i(s)
o (—s)?@*#=1) for small s indicating that, as in the directed
trap model, the order of this dynamical transition is larger
than one.

These analytical predictions for g+ u>1 in Egs. (26) and
(33) have been confirmed by solving numerically the eigen-
value equation (24). The average value (s) was computed
by averaging over at least 10° realizations of the disorder. In
Fig. 3, we show a plot of N-¢*#=1/ityy. (5) as a function of s.
In agreement with Egs. (26) and (33), one observes a dy-
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FIG. 3. Numerical evaluation of the large deviation function
g(s) for g=0.9 and u=0.8 (g+u>1) in the random energy model.
The plot shows that the rescaled large deviation function is inde-
pendent of the system size in the active (s<<0) phase, and is sub-
extensive in the system size in the inactive (s>0) phase. Thus at
s=0 a phase transition occurs between a set of histories with con-
stant activity (K)>0 and a set of histories with subextensive activ-
ity (K)~N"7*,

namical transition occurring at s=0. Moreover, it has been
checked that for positive s the large deviation function be-
haves as predicted in Eq. (33), i.e., —fx(s) = O(N@+#=1/r)
We have checked numerically that this transition is also
present for g+ w << 1, where the equilibrium correlation func-
tion displays a nonexponential decay (22). In Fig. 4, one
shows a plot of N™"2¢s(s) as a function of s for g=0.45 and
m=0.45. In that regime, the autocorrelation function decays
like a stretched exponential and our numerical data clearly
show a transition occurring for s=0. Similarly, in Fig. 5, one
shows a plot of ¢(s)N24#/% a5 a function of s for ¢

1#}((8)]\772
0.1 T T T
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FIG. 4. Numerical evaluation of the large deviation function for
q=0.45 and u=0.45 (g+p<1 and ¢<1/2) in the random energy
model. The rescaled large deviation function is a constant in the
active phase and subextensive in the system size in the inactive
phase. Thus, a phase transition in the space of histories still occurs.
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FIG. 5. Numerical evaluation of the large deviation function for
g=0.6 and ©=0.35 (g+u<1 and ¢g>1/2) in the random energy
model. Once again we observe a discontinuity in the large deviation
function.

=0.6 and ©=0.35, where the correlation function decays like
a power law. Here again, our numerical data clearly shows a
dynamical transition occurring for s=0. Again these results
were obtained averaging over at least 10° realizations of the
disorder. Thus in the three cases we have an anomalous be-
havior of the correlation function (22) and a discontinuity in
the derivatives of the large deviation function i(s) at s=0
(Figs. 3-5).

IV. CONNECTION WITH THE EXTREME
VALUE STATISTICS

The glassy behavior of disordered systems emerges in the
low-temperature phase or in the long time limit. Conse-
quently the extreme values of the disorder realizations play a
dominating role with respect to the typical values. The low-
temperature phase of the random energy model is indeed
described through the distribution of the lowest energy levels
(18), which is found to belong to the Gumbel universality
class of the minimum of variables which are unbounded and
have a distribution that decays faster than any power law to
—00

It was pointed out in [11,12] that the Gumbel class corre-
sponds exactly to the one-step replica symmetry breaking
solution in the replica language. It was also highlighted that
for the Weibull class, i.e., the extreme value statistics of
bounded variables, and the Fréchet class for power-law de-
caying variables, the replica method cannot be used without
substantial modifications.

In order to shed light on how the extreme value statistics
of disorder affects the glassy properties of the system in the
low-temperature phase we consider two versions of the ran-
dom energy model. We choose for the equilibrium distribu-
tion of configurations in the low-temperature phase, i.e., the
Boltzmann factors (20) B j=e‘ﬁef, both an exponential and a
uniform distribution. Unlike the Lévy statistics we have now
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in both cases a finite mean probability to stay in an energy
level, however, in the case of exponentially distributed dis-
order we still find a dynamical phase transition. These results
are corroborated by a study of the equilibrium autocorrela-
tion function in both cases.

A. Exponentially distributed Boltzmann factors

We recall that the dynamics of the random energy model
can be described through the following master equation:

LS Wb 0= 3 wipo, (34)

d j#i j#i

where the transition rates for level-dependent barriers are
W;;=N"2"B;™B;“, with p=0 and g € (0,1).

We define as a version of the random energy model a
system whose dynamics is still described by Eq. (34), with
the difference that the statistics of the energy barriers in the
low-temperature phase has changed. Instead of a Lévy dis-
tribution we consider a probability distribution function of
the Boltzmann factors of the form

p(B) = p(e %) = NO(B;)e™™:, (35)

where the scaling in NV has been chosen a posteriori to find a
well-defined thermodynamic limit of the equilibrium auto-
correlation function (see Sec. IV C 1).

The large deviation function ii(s) is again the largest
solution of the eigenvalue equation

> e_sB} 24

T BT+ (€7 = 1B + hls)

=1. (36)

We solved numerically Eq. (36) and averaged the solution
over 107 realizations of the disorder. The results are plotted
in Fig. 6.

As in the directed trap model and the random energy
model we observe a dynamical transition. For s <0 the large
deviation function appears to be constant in the system size.
For s >0 the curve approaches the horizontal axis for N> 1.

Thus, even if the moments of the Boltzmann factors (or
the mean trapping times) are well defined, the system pre-
sents dynamical heterogeneities and we expect an anomalous
slowing down of the dynamics.

B. Uniformly distributed waiting times

Let us consider uniformly distributed Boltzmann factors

(o= )5 -2)

p(B)=N6 Bi_N o N -B;], (37)
where a is a finite constant with 0 & [a,a+1]. If we allow the
B;’s to take the value B=0, after some time the system will
be frozen in a single energy level.

Evaluating numerically the large deviation function of this
system we find a complete independence of the large devia-
tion function from the system size for all s (see the inset in
Fig. 6), and no discontinuity of the large deviation function.
Since we do not observe any dynamic transition in the space
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FIG. 6. Numerical evaluation of the average large deviation
function ¢g(s) for exponentially distributed Boltzmann factors,
with p=¢=0.9. The large deviation function passes from a constant
(independent of the system size) value in the active phase, to a
subextensive value in the inactive phase. Inset: Numerical evalua-
tion of ¢g(s) for uniformly distributed Boltzmann factors. Here the
large deviation function is independent of the system size for every
s.

of histories, we expect this system to be dynamically homo-
geneous.

C. Correlation function

To compute the equilibrium autocorrelation function of
the random energy model with exponentially and uniformly
distributed Boltzmann factors we recast the Koper and Hil-
horst’s study [14] of the relaxation properties of the random
energy model.

Starting from the master equation (34) with transition
rates (20), the authors proved that the autocorrelation func-
tion C(¢) of any physical quantity that does not couple to the
energies of the REM can be written as a complex integral of
the form

N N
- VB,V,By
ds o1 krj (5= Vj()(s -Vid)
c<r>=—3{> Y (38)
2ti V,B,
sz, ——
=1 S=Vi{

with Z=EZIBI- and where the line integral is taken over a
contour oriented counterclockwise and encloses all the poles
of the integrand on the positive real axis. If we average this
expression, as in [14], over a Lévy distribution we find the
asymptotic behaviors (22) which characterize the glassiness
of the random energy model. Here, to corroborate the pres-
ence or absence of the dynamical transition obtained previ-
ously, we average Eq. (38) over an exponential distribution
and then over a uniform distribution.

1. Exponential distribution

We consider exponentially distributed Boltzmann factors

PHYSICAL REVIEW E 78, 011120 (2008)

p(B)=N6(B)e™", (39)
and transition rates of the form
W;;=N"2B{~B;", (40)

where the N dependence is chosen to give a well-defined
thermodynamic limit of the correlation function. After some
manipulations, the details of which are given in the Appen-
dix, one finds

C(t)= 4/(‘1)+1f dxj dy xy e_’l/(q+l)§(x’y), (41)
0 0

where g(x,y)=x+y+I'(2—¢)/(x?+y?). One easily finds that
g(x,y) has a single minimum in R* X R* for x*=y*=[¢I'(2
—q)/4]V D and glg(x*,y")=dhg(x",y*)=x""". Thus the
large time behavior C(¢) is given by a saddle-point calcula-
tion yielding

C(t) ~ 2@t 3o N for 4 (42)
which shows, given that ¢> 0, that the relaxation is indeed
slower than exponential.

2. Uniform distribution

We now consider uniformly distributed Boltzmann factors

(B) N0(B a>a<a +1 B) (43)
Po= NN )

where a is a constant. After some manipulations left in the
Appendix, one has

_ a+1 a+1 xy .
C(r) = f dx f dy=5e7a 0, (44)
a a a

The minimum of the integrand is reached for x=y=a and the
maximum for x=y=a+1, thus the integral is bounded from
above and below by an exponential and we conclude that

6([) — e—tc(a)’ (45)

where c(a) is a positive function of a. Equation (45) is the
asymptotic behavior of the correlation function of a non-
glassy system.

V. CONCLUSION

The central statement of our work is that when a system
presents glassy features (anomalous slowing down of the dy-
namics, nonexponential decay of the correlation functions,
anomalous dependence of viscosity on temperature, and so
on) it appears heterogeneous in time and energy landscape,
and a dynamical transition in the space of time realizations
that the system can follow in configuration space must be
found.

Here we validated this statement for two well-known dis-
ordered models of glasses, the random energy model and the
directed trap model, detecting in both a dynamical phase
transition. In the random energy model the influence of the
statistics of disorder over the space-time heterogeneity of the
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system was analyzed. Indeed we found a dynamical transi-
tion for a REM with exponentially distributed Boltzmann
factors and showed that we are in the presence of a glassy
dynamics by computing the equilibrium autocorrelation
function of this system which is shown to decay anoma-
lously, i.e., to be a stretched exponential in time. Further-
more, we considered a uniform distribution of Boltzmann
factors finding no dynamical transition and showing, as ex-
pected, that the equilibrium relaxation is exponential in time
and no slowing down of the dynamics is present.

APPENDIX: COMPUTATION OF THE CORRELATION
FUNCTIONS FOR THE REM

In this appendix, we present some details concerning the
computation of the corrrelation function for the kinetic REM.

1. General framework

We recall the master equation (34) with transition rates
(20),

N
dpr(1) _ VB2, ViPi(1) - ViPi1)L. (A1)
j=1

dt
The probability to find the system at level i at time # if it was
in j at time =0, i.e., the Green function, can be written in
terms of the eigenvalues and eigenfunctions of the master
equation. We call qﬁl}.‘ the ith component of the right-hand
eigenfunction with eigenvalue —\,

dd; \
—=A (A2)
Using (A1) one can write
N
—==2V; (A3)

"vg)\

The detailed balance condition implies that the left-hand
eigenfunction is = #"/B;, so that the Green function takes
the form

N S Ly N —X
G,,(l)=z S s =S o ;Véf 12{ L
I=1 Ed)zl N S ViBy .
-1 ot (Vid=N)
(A4)

The equilibrium autocorrelation function expressed in terms
of these Green functions is
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C(z)—E{ Gii{t) = G;(0)} PSS, (A5)

where P;qzlimHoo P(t)*B;.
To get rid of the dependence of the autocorrelation func-
tion C(¢) in Eq. (A5) on the unknown eigenvalues \; we

consider its Laplace transform C(s), which using (A4) can be
written as

N

C()—lz—l)

Z75 (s+N)F'(N) (46)

with Z==Y B, and where

B2 N 2
F() = E—'—LVB 1.

N
H(z) = E Vi{-z
Jj=1 =1

VZ— 2

We introduce g(z)=H(z)/[(s+z)F(z)], which has poles in z
=-s, in z=V;{ and in the zeroes of F(z). Looking at the
eigenvalue equation (A3) we see that the sum of the residues
of g(z) in the zeroes of F(z) will be exactly C(s). Thus, since

the contour integral of g(z) along a circle centered in the
origin with radius R vanishes as R— <, one finds

V.B.V,B,
N
- 1| j=t1 k#j (ng"' $)(Vil +s) 1
Cls)=-~ 5 + 2B -1,
s VIBZ Z Jj=1
=1 Vil+s

(A7)

from which we see that C(s) has poles only on the negative
real axis (s=0 is not a pole). Applying an inverse Laplace
transform and changing s into —s{ we obtain the expression
of the autocorrelation function C(r) given in Eq. (38).

2. Exponential distribution

We consider exponentially distributed Boltzmann factors

p(B)=N6(B)e™. (A8)
Using for the denominator in Eq. (38) the integral represen-
tation & '=[jd\e ™, we obtain from Eq. (38) the expres-
sion for the averaged autocorrelation function,

~ .
C(t)_z\llllr:cNf dB,f dB,f d)\f d,u% 27Tls(qu—1)(qu—l)

X ¢~NB+B)

1- 1-
e—)\(Bl-+Bj)—,u[(B,-/sB?—l)+(Bj/sB“f—1)]—st1\F2q(Bi “1+B;7) 1%_2,

(A9)

011120-8



SLOW RELAXATION, DYNAMIC TRANSITIONS, AND ...

where the integral I is given by

Iy=N f dBe~NB-NB-uBI(sBI=1)=siN"1B' =7
0

Rescaling the variable B=B'/N and integrating by parts we
have, to leading order in N,

1 o0
=1-— f dBe [N = p+stNI(1 - q)B].
NJo

(A10)

Thus using this large N expansion (A10) in the formula (A9),
and integrating over N and u, we obtain

C(1) = lim N4J dBf dng
N 2ms(B +B +1)

o~NB+B )-sIN“2[B) 4B jl “9LNIT(2—g)]

(sB{ - 1)(sBI - 1)

X
s(BB;+ B,BY) - B~ B; -

Changing variables according to NB;=x, NB;=y, and keep-
ing only the leading orders in N, we have

—(x+y)=stN~IT'(2—q)

C(t) = lim N*

i d. d
N—oo xf y§ 2771

which has one pole in s=N?/(x?+y?). Complex integration
thus gives

s[sN A(x7+y9) - 17"
(A11)

C@t)= f dx f dy xye™ W)~ IN 2=/ yD] (A 12)
0 0

Finally we change variables x=x'r"@+) y=y’¢/a+)) apqd
find the expression given in (41).
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3. Uniform distribution
We now consider uniformly distributed Boltzmann factors

p(B) = N0(B - ]%) a(u - B),

N (A13)

where a is a constant. The average of the correlation function
(38) takes the form
(a+1)IN (a+1)/IN o o
C(t) = lim N* dB; f dB; f d\ f d,z#)
N—eo alN alN 0 0
s BB,

2mis(sBf = 1)(sB] - 1)

_NB+B:)— eBI— JeBI—1) =siN~2P(B) 9419 N—
Xe N(B;+B))-ul(Bi/sB; ])+(BJ/sBj 1)]-stN~P(B; +B; )J% 2’

(A14)

where

a+1/N _—
]N:f dBNe—}\B—,lLB/SBq—I—XZN— 7B q' (AIS)

a/N

Since the interval of integration is very small when N> 1 we
can consider the integrand as a constant over this interval
and make the approximation

JN: e—)\aN"lﬂmN—l—stN—zp_(I_q)al_q

(A16)

Thus after integration over N and u and changes of variables
x=NB; and y=NB;, the correlation function becomes

_Y,N—2v+qa1 -q

C(1) 2]3’13:0[ dxf dy?g 2771 Sdz[SN I(x?+y7) 1]
(A17)

The integrand has one pole in s=N?/(x?+y9) so after com-
plex integration and choosing p=g we obtain the formula
given in (44).
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